



# **Cambridge IGCSE**<sup>™</sup>

| CANDIDATE<br>NAME |  |  |                     |  |  |
|-------------------|--|--|---------------------|--|--|
| CENTRE<br>NUMBER  |  |  | CANDIDATE<br>NUMBER |  |  |

CHEMISTRY 0620/42

Paper 4 Theory (Extended)

May/June 2020

1 hour 15 minutes

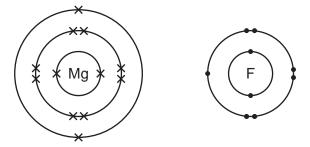
You must answer on the question paper.

No additional materials are needed.

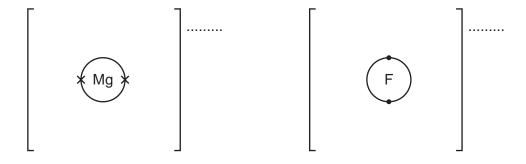
#### **INSTRUCTIONS**

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

#### INFORMATION


- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

| (a) Giv        | ve the name of the process that:                                                                  |     |
|----------------|---------------------------------------------------------------------------------------------------|-----|
| (i)            | occurs when a gas turns into a liquid                                                             |     |
| (ii)           | occurs when a solid turns into a gas without first forming a liquid                               | 1]  |
| /:::\          | is used to concrete a mixture of liquide with different beiling points                            | [1] |
| (iii)          | is used to separate a mixture of liquids with different boiling points                            | [1] |
| (iv)           | is used to extract aluminium from aluminium oxide                                                 | [1] |
| (v)            | is used to separate a mixture of amino acids.                                                     | [1] |
| <b>(b)</b> The | e symbols of the elements in Period 2 of the Periodic Table are shown.                            |     |
|                | Li Be B C N O F Ne                                                                                |     |
|                | r each of the following, give the symbol of an element from Period 2 which matches the scription. | ne  |
| Ea             | ch element may be used once, more than once or not at all.                                        |     |
| Wh             | nich element:                                                                                     |     |
| (i)            | combines with hydrogen to produce ammonia [                                                       | 1]  |
| (ii)           | makes up approximately 21% of clean, dry air                                                      |     |
| (iii)          | has atoms with only two electrons in the outer shell                                              | _   |
| (iv)           | has atoms with only seven protons                                                                 | 1]  |
| (v)            | is a monoatomic gas                                                                               | 1]  |
| (vi)           | is a soft metal stored in oil?                                                                    | 1]  |
| ( )            |                                                                                                   | [1] |


[3]

- 2 Fluorine forms both ionic and covalent compounds.
  - (a) Magnesium reacts with fluorine to form the ionic compound magnesium fluoride.

The electronic structures of an atom of magnesium and an atom of fluorine are shown.



(i) Complete the dot-and-cross diagrams to show the electronic structures of one magnesium ion and one fluoride ion. Show the charges on the ions.



(ii) What is the formula of magnesium fluoride?

(iii) Magnesium fluoride does **not** conduct electricity when it is solid.

What can be done to solid magnesium fluoride to make it conduct electricity?


In your answer explain why magnesium fluoride conducts electricity when this change is made.

[2]

(b) Carbonyl fluoride,  ${\rm COF_2}$ , is a covalent compound. The structure of a molecule of  ${\rm COF_2}$  is shown.



Complete the dot-and-cross diagram to show the electron arrangement in a molecule of carbonyl fluoride. Show outer shell electrons only.



[3]

**(c)** The melting points of magnesium fluoride and carbonyl fluoride are shown.

|                    | melting point/°C |
|--------------------|------------------|
| magnesium fluoride | 1263             |
| carbonyl fluoride  | -111             |

| high melting point.                                                                                    |
|--------------------------------------------------------------------------------------------------------|
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
| [2]                                                                                                    |
| Explain, using your knowledge of structure and bonding, why carbonyl fluoride has a low melting point. |
|                                                                                                        |
|                                                                                                        |
|                                                                                                        |
| [2]                                                                                                    |
|                                                                                                        |

[Total: 13]

| 3 | (a)        | Sulfu | uric acid is made from sulfur in a four-stage process.                                                                 |       |
|---|------------|-------|------------------------------------------------------------------------------------------------------------------------|-------|
|   |            | stag  | e 1 Sulfur is converted into sulfur dioxide.                                                                           |       |
|   |            | stag  | e 2 Sulfur dioxide is converted into sulfur trioxide.                                                                  |       |
|   |            | stag  | e 3 Sulfur trioxide is converted into oleum.                                                                           |       |
|   |            | stag  | e 4 Oleum is converted into sulfuric acid.                                                                             |       |
|   |            | (i)   | How is sulfur converted into sulfur dioxide in stage 1?                                                                |       |
|   | (          | (ii)  | Describe how sulfur dioxide is converted into sulfur trioxide in <b>stage 2</b> .                                      | [1]   |
|   |            |       | Your answer should include:                                                                                            |       |
|   |            |       | <ul> <li>an equation for the reaction</li> <li>the temperature used</li> <li>the name of the catalyst used.</li> </ul> |       |
|   |            |       |                                                                                                                        |       |
|   |            |       |                                                                                                                        |       |
|   |            |       |                                                                                                                        |       |
|   | <b>(</b> i | iii)  | The reaction in stage 2 can reach equilibrium.                                                                         |       |
|   |            |       | What is meant by the term equilibrium?                                                                                 |       |
|   |            |       |                                                                                                                        |       |
|   |            |       |                                                                                                                        | [2]   |
|   | (b)        | Sulfu | ur trioxide is converted into oleum, $H_2S_2O_7$ , in <b>stage 3</b> .                                                 |       |
|   |            | Wha   | t is sulfur trioxide reacted with to convert it into oleum?                                                            |       |
|   |            |       |                                                                                                                        | . [1] |
|   | (c)        | Oleu  | m is converted into sulfuric acid in <b>stage 4</b> .                                                                  |       |
|   |            | Write | e a chemical equation for the conversion of oleum, H <sub>2</sub> S <sub>2</sub> O <sub>7</sub> , into sulfuric acid.  |       |
|   |            |       |                                                                                                                        | [2]   |

[Total: 16]

| (d) | Wh   | en copper is reacted with hot concentrated sulfuric acid, sulfur dioxide gas is formed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Bala | ance the chemical equation for this reaction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |      | $Cu +H_2SO_4 \rightarrow CuSO_4 + SO_2 +H_2O$ [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (e) | Sul  | fur dioxide is a reducing agent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     |      | e the colour change that occurs when excess sulfur dioxide is bubbled into acidified aqueous assium manganate (VII). $ \frac{1}{2} \left( \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \right) \left( \frac$ |
|     | star | ting colour of the solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | fina | I colour of the solution[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (f) | Wh   | en sulfuric acid reacts with ammonia the salt produced is ammonium sulfate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | Wri  | te the chemical equation for this reaction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |      | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (g) | Bar  | ium sulfate is an insoluble salt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | Bar  | ium sulfate can be made from aqueous ammonium sulfate using a precipitation reaction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | (i)  | Name a solution that can be added to aqueous ammonium sulfate to produce a precipitate of barium sulfate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |      | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | (ii) | Write an ionic equation for this precipitation reaction. Include state symbols.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

......[2]

|     | ygen is produced by the decomposition of hydrogen peroxide. Manganese( ${ m IV}$ ) oxide is the alyst for this reaction.                           |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) | What is meant by the term catalyst?                                                                                                                |
|     |                                                                                                                                                    |
|     |                                                                                                                                                    |
|     | [2]                                                                                                                                                |
| (b) | A student measures the volume of oxygen produced at regular time intervals using the apparatus shown. Large lumps of manganese(IV) oxide are used. |
|     | gas syringe manganese(IV) oxide catalyst aqueous hydrogen peroxide                                                                                 |
|     | A graph of the results is shown.                                                                                                                   |
|     | volume of oxygen produced / cm³                                                                                                                    |
|     | (a)                                                                                                                                                |

What happens to the rate of this reaction as time increases? In your answer, explain why the rate changes in this way.

time/s

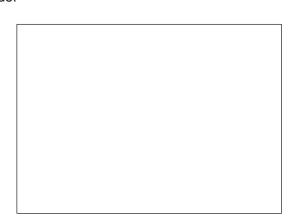
(c) The experiment is repeated using the same mass of manganese(IV) oxide. Powdered manganese(IV) oxide is used instead of large lumps. All other conditions stay the same.

Sketch a graph on the axes in **(b)** to show how the volume of oxygen changes with time. [2]

| (d) | In terms of particles, explain what happens to the rate of this reaction when the temperature is increased.                       |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|     |                                                                                                                                   |  |  |  |  |  |  |
|     |                                                                                                                                   |  |  |  |  |  |  |
|     |                                                                                                                                   |  |  |  |  |  |  |
|     | [3]                                                                                                                               |  |  |  |  |  |  |
| (e) | The equation for the decomposition of hydrogen peroxide is shown.                                                                 |  |  |  |  |  |  |
| (0) |                                                                                                                                   |  |  |  |  |  |  |
|     | $2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$                                                                                       |  |  |  |  |  |  |
|     | 25.0 cm <sup>3</sup> of aqueous hydrogen peroxide forms 48.0 cm <sup>3</sup> of oxygen at room temperature and pressure (r.t.p.). |  |  |  |  |  |  |
|     | Calculate the concentration of aqueous hydrogen peroxide at the start of the experiment using the following steps.                |  |  |  |  |  |  |
|     | Calculate the number of moles of oxygen formed.                                                                                   |  |  |  |  |  |  |
|     |                                                                                                                                   |  |  |  |  |  |  |
|     |                                                                                                                                   |  |  |  |  |  |  |
|     | mol                                                                                                                               |  |  |  |  |  |  |
|     | Deduce the number of moles of hydrogen peroxide that decomposed.                                                                  |  |  |  |  |  |  |
|     | mol                                                                                                                               |  |  |  |  |  |  |
|     | <ul> <li>Calculate the concentration of hydrogen peroxide in mol/dm<sup>3</sup>.</li> </ul>                                       |  |  |  |  |  |  |
|     |                                                                                                                                   |  |  |  |  |  |  |
|     |                                                                                                                                   |  |  |  |  |  |  |
|     | mol/dm³                                                                                                                           |  |  |  |  |  |  |
|     | [3]                                                                                                                               |  |  |  |  |  |  |
| (f) | Oxygen can also be produced by the decomposition of potassium chlorate(V), $KClO_3$ .                                             |  |  |  |  |  |  |
| (') | The only products of this decomposition are potassium chloride and oxygen.                                                        |  |  |  |  |  |  |
|     |                                                                                                                                   |  |  |  |  |  |  |
|     | Write a chemical equation for this decomposition.                                                                                 |  |  |  |  |  |  |
|     | [2]                                                                                                                               |  |  |  |  |  |  |
|     | [Total: 16]                                                                                                                       |  |  |  |  |  |  |

|     | ctrolysis of concentrated aqueous sodium chloride using inert electrodes forms chlodrogen and sodium hydroxide. | rine,  |
|-----|-----------------------------------------------------------------------------------------------------------------|--------|
| (a) | What is meant by the term <i>electrolysis</i> ?                                                                 |        |
|     |                                                                                                                 |        |
|     |                                                                                                                 |        |
|     |                                                                                                                 | . [2]  |
| (b) | Name a substance that can be used as the inert electrodes.                                                      |        |
|     |                                                                                                                 | . [1]  |
| (c) | Write an ionic half-equation for the formation of hydrogen during this electrolysis.                            |        |
|     |                                                                                                                 | . [1]  |
| (d) | Give the formulae of the <b>four</b> ions present in concentrated aqueous sodium chloride.                      |        |
| (,  |                                                                                                                 | . [2]  |
| (-) |                                                                                                                 |        |
| (e) | Explain how sodium hydroxide is formed during this electrolysis.                                                |        |
|     |                                                                                                                 |        |
|     |                                                                                                                 | . [2]  |
|     | [Tot                                                                                                            | al: 8] |

| 6 | (a) | Propane reacts | with chlorine | in a | photochemical | reaction | as shown |
|---|-----|----------------|---------------|------|---------------|----------|----------|
|---|-----|----------------|---------------|------|---------------|----------|----------|


$$C_3H_8 + Cl_2 \rightarrow C_3H_7Cl + HCl$$

| (i) What type of read | ction is this? |
|-----------------------|----------------|
|-----------------------|----------------|

| г       | ā |
|---------|---|
| <br>· L | Ί |

(ii) What condition is needed for this photochemical reaction to occur?

(iii) Draw **two** structural isomers of compounds with the formula  $C_3H_7Cl$ . Show all of the atoms and all of the bonds.



[2]

**(b)** Propene reacts with chlorine in an addition reaction as shown.

$$C_3H_6 + Cl_2 \rightarrow C_3H_6Cl_2$$

(i) State why this is an addition reaction.



(ii) The structures of the reactants and products of this reaction are shown.

Some bond energies are shown in the table.

| bond  | bond energy<br>in kJ/mol |
|-------|--------------------------|
| C–C   | 347                      |
| C=C   | 612                      |
| C–H   | 413                      |
| C-C1  | 339                      |
| Cl-Cl | 242                      |

Calculate the energy change for the reaction between propene and chlorine using the following steps.

Calculate the energy needed to break the bonds.

| K |
|---|
|---|

Calculate the energy released when bonds are formed.

|  |  |  |  |  |  |   |   |   |  |  |  |  |   |   |   |  |  | ı |   |  |
|--|--|--|--|--|--|---|---|---|--|--|--|--|---|---|---|--|--|---|---|--|
|  |  |  |  |  |  | • | • | • |  |  |  |  | • | • | • |  |  | ĸ | J |  |

• Calculate the energy change for the reaction between propene and chlorine.



|   | _        |        |         |          | _         |          |          |      |
|---|----------|--------|---------|----------|-----------|----------|----------|------|
|   | $\sim 1$ | Thoro  | ara thr | oo funct | ional ara | unc in   | compound | 1 A  |
| • | C)       | 111616 | are un  | ee lullo | ionai gio | ill equi | compound | I A. |

## compound ${\bf A}$

|      | пп                                                                                  |     |
|------|-------------------------------------------------------------------------------------|-----|
| (i)  | Name the homologous series of compounds that contains the following structures.     |     |
|      | C=C                                                                                 |     |
|      | -OH                                                                                 |     |
|      | -COOH                                                                               | [3] |
|      |                                                                                     | [S  |
| (ii) | What would you observe when compound <b>A</b> is added to:                          |     |
|      | aqueous bromine                                                                     |     |
|      | aqueous sodium carbonate?                                                           |     |
|      |                                                                                     | [2] |
| Co   | mpound <b>A</b> can be used as a single monomer to produce two different polymers.  |     |
| (i)  | Draw <b>one</b> repeat unit of the addition polymer formed from compound <b>A</b> . |     |
|      |                                                                                     |     |

|      |                                                              | [2] |
|------|--------------------------------------------------------------|-----|
| (ii) | What type of condensation polymer is formed from compound A? |     |
|      |                                                              | [1] |
|      |                                                              |     |

[Total: 16]

© UCLES 2020 0620/42/M/J/20

(d)

### **BLANK PAGE**

### **BLANK PAGE**

#### **BLANK PAGE**

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

|       | <b>  </b> | 2<br>He | helium<br>4   | 10            | Ne           | neon<br>20                   | 18 | Ar | argon<br>40      | 36 | 궃  | krypton<br>84   | 54       | Xe       | xenon<br>131     | 98    | Rn          | radon           |        |           |                    |
|-------|-----------|---------|---------------|---------------|--------------|------------------------------|----|----|------------------|----|----|-----------------|----------|----------|------------------|-------|-------------|-----------------|--------|-----------|--------------------|
|       | <b>=</b>  |         |               | 6             | ட            | fluorine<br>19               | 17 | Cl | chlorine<br>35.5 | 35 | 南  | bromine<br>80   | 53       | П        | iodine<br>127    | 85    | Ąŧ          | astatine<br>-   |        |           |                    |
|       | 5         |         |               | 8             | 0            | oxygen<br>16                 | 16 | ഗ  | sulfur<br>32     | 34 | Se | selenium<br>79  | 52       | <u>e</u> | tellurium<br>128 | 84    | Ъ           | nolonium –      | 116    |           | /ermorium<br>-     |
|       | >         |         |               |               |              |                              |    |    | shosphorus<br>31 |    |    |                 |          |          |                  |       |             |                 |        |           | =                  |
|       | 2         |         |               |               |              |                              |    |    | silicon pt       |    |    |                 |          |          |                  |       |             |                 | 114    | Εl        | erovium            |
|       |           |         |               |               |              |                              |    |    | lluminium<br>27  |    |    |                 |          |          |                  |       |             |                 |        |           | =                  |
|       |           |         |               |               |              |                              |    |    | alt              |    |    |                 |          |          |                  |       |             | mercury th      | 112    | ت<br>ت    | copernicium<br>—   |
|       |           |         |               |               |              |                              |    |    |                  |    |    |                 |          |          |                  |       |             | m gold m        |        |           |                    |
|       |           |         |               |               |              |                              |    |    |                  |    |    |                 | $\vdash$ |          |                  |       |             | platinum<br>195 |        |           | Ē                  |
| Group |           |         |               |               |              |                              |    |    |                  |    |    |                 |          |          |                  |       |             |                 |        |           |                    |
|       |           |         |               | ]             |              |                              |    |    |                  |    |    |                 |          |          |                  |       |             | iridium<br>192  |        |           | Ε                  |
|       |           | - I     | hydroger<br>1 |               |              |                              |    |    |                  | 26 | Fe | iron<br>56      | 44       | Ru       | rutheniun<br>101 | 92    | Os          | osmium<br>190   | 108    | H         | hassium            |
|       |           |         |               |               |              |                              | 1  |    |                  | 25 | Mn | manganese<br>55 | 43       | ည        | technetium<br>-  | 75    | Re          | rhenium<br>186  | 107    | Bh        | bohrium<br>–       |
|       |           |         |               |               | pol          | ass                          |    |    |                  | 24 | ပ် | chromium<br>52  | 42       | Mo       | molybdenum<br>96 | 74    | ≥           | tungsten<br>184 | 106    | Sg        | seaborgium<br>-    |
|       |           |         | Key           | atomic number | atomic symbo | name<br>relative atomic mass |    |    |                  | 23 | >  | vanadium<br>51  | 41       | g        | niobium<br>93    | 73    | ā           | tantalum<br>181 | 105    | <u>6</u>  | dubnium            |
|       |           |         |               |               | ato          | rela                         |    |    |                  | 22 | ı  | titanium<br>48  | 40       | Zr       | zirconium<br>91  | 72    | 茔           | hafnium<br>178  | 104    | 弘         | rutherfordium<br>- |
|       |           |         |               |               |              |                              | •  |    |                  | 21 | Sc | scandium<br>45  | 39       | >        | yttrium<br>89    | 57-71 | lanthanoids |                 | 89–103 | actinoids |                    |
|       | =         |         |               | 4             | Be           | beryllium<br>9               | 12 | Mg | magnesium<br>24  | 20 | Ca | calcium<br>40   | 38       | ട്       | strontium<br>88  | 56    | Ва          | barium<br>137   | 88     | Ra        | radium             |
|       | _         |         |               | 8             | <u> </u>     | lithium<br>7                 | 1  | Na | sodium<br>23     | 19 | ¥  | potassium<br>39 | 37       | Rb       | rubidium<br>85   | 55    | S           | caesium<br>133  | 87     | ъ.        | francium<br>—      |

| 71<br>Lu        | lutetium<br>175     | 103 | ۲         | lawrencium   | I   |
|-----------------|---------------------|-----|-----------|--------------|-----|
| 70<br>Yb        | ytterbium<br>173    | 102 | %         | nobelium     | _   |
| e9<br>Tm        | thulium<br>169      | 101 | Md        | mendelevium  | _   |
| 68<br>Er        | erbium<br>167       | 100 | Fm        | ferminm      | Ι   |
| 67<br>Ho        | holmium<br>165      | 66  | Es        | einsteinium  | Ι   |
| °6<br>Dy        | dysprosium<br>163   | 86  | ₽         | californium  | 1   |
| es<br>Tb        | terbium<br>159      | 97  | Ř         | berkelium    | ı   |
| Gd              | gadolinium<br>157   | 96  | Cm        | curium       | ı   |
| e3<br>Eu        | europium<br>152     | 92  | Am        | americium    | _   |
| 62<br>Sm        | samarium<br>150     | 94  | Pu        | plutonium    | _   |
| e1<br>Pm        | promethium          | 93  | ď         | neptunium    | _   |
| 9<br>9<br>8     | neodymium<br>144    | 92  | $\supset$ | uranium      | 238 |
| 59<br>Pr        | praseodymium<br>141 | 91  | Ра        | protactinium | 231 |
| SB<br>Ce        | cerium<br>140       | 06  | H         | thorium      | 232 |
| 57<br><b>La</b> | lanthanum<br>139    | 88  | Ac        | actinium     | 1   |

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).